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We show how the ambiguity of Lagrangjan and Hamiltonian descriptions for 
conservative systems gives rise to an analogous ambiguity for dissipative sys- 
tems. For a subclass of  them we also give a Lagrangian description. 

1. INTRODUCTION 

If we adopt the point of view that in classical particle mechanics a 
system is completely specified by the equations of motion, then a given 
system may admit many different Lagrangian descriptions or none. These 
considerations are by now well known in the literature (Havas, 1957; Currie 
and Saletan, 1966; Gelman and Saletan, 1973; Caratfa et al., 1976; Marmo 
and Saletan, 1977; Dodonov et al., 1978; Sarlet and Cantrijn, 1978; Okubo, 
1980; Sarlet and Bahar, 1980; Sarlet, Engels, and Bahar, 1980; Dodonov 
et al., 1981; Crampin, 1981; Kocik, 1981; Sarlet, 1981). A recent compre- 
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hensive discussion of the so-called Helmholtz conditions for a second-order 
system to admit a Lagrangian description is given by Sarlet (1981). Differ- 
ent Lagrangian descriptions of the same system give rise to different 
"energies," i.e., E e = t l i O E / O 0  i - s It turns out that whether a dynamical 
system is dissipative or not may depend on its Lagrangian description. 

Several dissipative systems are known to admit a Lagrangian descrip- 
tion. In this paper we show the geometrical origin of such Lagrangians in 
the context of global differential geometry. 

The organization of the paper is the following. In Section 2 we review 
in a simple way the inverse problem and some well known examples of 
dissipative systems in the language of differential forms. In Section 3 we 
show a general procedure to give a Lagrangian description for a class of 
dissipative systems, while Section 4 is devoted to considering the ambiguity 
in the Lagrangian description to cover different dissipative forces. In 
Section 5 we touch upon Noether's theorem in such a setting. A recent 
analysis of vector fields generating invariants for dissipative systems is given 
by Cantrijn (1981). Section 6 deals with conclusions and some open prob- 
lems. 

2. PRELIMINARIES 

2.1. Inverse Problem: A Simple Review. On the configuration space Q, 
with coordinates (q) = (q: .....  qn), Newtonian equations in normal form are 

~ i = G i ( q k , q k ) ,  i ~ ( 1  .. . . .  n), k ~ ( 1  .. . . .  n) (1) 

A Lagrangian description is given in terms of E =E(qk, / / , )  through 
Euler-Lagrange equations: 

d OE OE 
0, i ~ ( 1  ..... n) (2) 

dt 0;7 i Oq i 

The inverse problem, as presented in the literature (see Santilli, 1978, for an 
extensive treatment; see also Havas, 1957; Currie and Saletan, 1966; 
Gelman and Saletan, 1973; Carat/1 et al., 1976; Marmo and Saletan, 1977; 
Dodonov et al., 1978; Dodonov et al., 1981; Okubo, 1980; Sarlet and 
Cantrijn, 1978; Cantrijn and Sarlet, 1981; Sarlet and Bahar, 1980; Sarlet, 
Engels and Bahar, 1980; Crampin, 1981; Kocik, 1981; Sarlet, 1981), starts 
from the remark that if a o ( t ,  q, il) is any nondegenerate matrix, equations 
(1) and 

a i j ( 4  i -- Gi)  =-- 0 (3) 
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are completely equivalent (by this we mean that they give rise to the same 
set of trajectories). Then the Lagrangian description is posed for equations 
(3), where a i / s  are unknown. In the language of differential forms, the 
problem amounts to finding integrating factors for some 2-forms associated 
to equations (1). This association goes back to Cartan (Cartan, 1922; 
Gallissot, 1951; Gallissot, 1952). 

In terms of differential forms, the following is a simple presentation of 
the problem, but see also Sarlet and Cantrijn (1978), Cantrijn and Sarlet 
(1981), Sarlet and Bahar (1980), Sarlet, Engels, and Bahar (1980), Crampin 
(1981), Kocik (1981), Sarlet (1981). (For different approaches see Tonti, 
1969; Takens, 1979). On TQ • R (Abraham and Marsden, 1978; Carat/a 
et al., 1976) equations (1) are reduced to 

dqi 
"-aT = 0i 

dqi --~ = G i i ~ (1 . . . .  ,n}  (4) 

dt 
dt 

In collective coordinates (~, t) (this allows for other carrier spaces) we 
have 

d ~  i = At 

dt 
& 
- - ~ - 1  
dt 

i ~ (1 . . . . .  2 . )  (5) 

Such equations are described by the vector field A(~, t) = NO/O~ i + O/Ot, 
or by the set of 1-forms y ' = d ~ i - N d t ,  i ~ ( l  . . . . .  2n). The remarkable 
property of the "/'s is 

ia7 i = O, Vi ~ (1 , . . . ,2n)  

ia dt = 1 (6) 

An independent set of 2n + 1 forms determines (and is determined by) a 
vector field A by equations (6). 

By considering combinations oJ = a~jy i A ~'J, lla;fll nondegenerate, A can 
be determined as the unique vector field such that iato = 0, i a dt = 1. It is 
quite obvious that A does not determine a unique o:, and different nonde- 
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generate matrices will give rise to different 60's. The additional requirement 
of closure for 60, i.e., d60--O, restricts the set of allowed ai#'s, but still 
leaving room for many of them. 

As a matter of fact, for any point m of the carrier space, such that 
A(m) :* O, it is possible to find a neighborhood U on which there is an 
infinite set of closed w's. By using the "straightening out theorem" [see 
Abraham and Marsden (1978), p. 67, Theorem 2-1-9], we can find a 
coordinate system for U, say ( ~ ) =  (~ ,  ~2 . . . . .  ,/2,, t), such that 

0 0 ~ - - - + - ~  
- 0,/i 

and 

y l = d T l l - - l d t ,  y2  = dr /2  . . . . .  . y 2 n = d . q 2 n  

60 -~ aijY i A y J, ia60 = 0, i a dt = 1, a i j  = --  a# 

The expression of 60 = a i j d #  A d~l j - aud t  A d l l  j shows that in the time- 
J 1 independent case H a = a l . v /  w'll give a possible Hamiltonian for the 

. h ~ j , I  . J . 

symplectic structure aijd # A d~L Thus, locally the "inverse problem" at the 
symplectic level has always infinite solutions and any constant of the motion 
which has regular values in U can be a possible Hamiltonian in U [see 
Abraham and Marsden (1978) for the definition of regular value]. 

Of course, not all of such 2-forms can be given a Lagrangian descrip- 
tion if we only allow for transformations which are Q-transformations 
(Marmo and Saletan, 1977). 

For the Lagrangian description we go back to coordinates (qi,//i, t). 
The dynamics is 

d q  i = ~1 i 

--ali- 
A___ d/f =A i 

-27- 
dt 
27 =1 

with associated 1-forms: 

~i  = dqi  _ i l i  dt ,  # i  = do i  _ ~ dt 
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Allowed 2-forms are 

ai jot  A "Jr" bijot  A -}- c i j f l  i A 

On TQ • R, closed 2-forms are described by a Lagrangian funct ion E if 

tO = dOe - dEe A dt 

where 

Oe d i, 
Oe='-~qi q E e = q  - ~ q ~ - E  

in a natural chart  (q,// ,  t). Thus, a necessary condit ion for a Lagrangian 
description of  allowed tO's is cij - 0. 

Now we are not permitted to make use of the "straightening out  
theorem," for the previous ~'s  coordinates would mix up q ' s  a n d / / ' s  and 
destroy the vectorial nature of  fibers in TQ. For  a necessary and sufficient 
condit ion for a Lagrangian description in the t ime-independent  case see 
Balachandran et al. (1980). For  a recent comprehensive discussion see Sarlet 
(1981). 

2.2" Examples. Example 1. On Q = R,  TQ = R 2 consider the dynamical  
system: 

A--- 

aq 
-di  = q 

dO 
d--t = - "tO 

dt ~=l 

or q + "tO = 0 

F r o m  the above considerations,  we get 0 e = In/ /dq,  and 

E = O ( l n / / -  1 ) - . t q ,  Ee = / / + . t q  

This example shows that, by consider ing/ ]  = 0, we get s  ,zq ~" 2, Ee ' = �89 
and q + "tO = 0 might be thought  of as a dissipative system with respect to 
tOe, = d# A d q, for iAtOe, = it d~l - "tq dq and ( d / d t  ) Ee, = - y / /dq(A)  = - .t//2. 
On  the other hand, tOe = (1 / / / )  dq /x d o gives &tOe = do + .t dq and ( d / d t  ) E e 
-= 0 (even if we have to restrict ourselves to TQ - { ze ro  section), this does 
not  create troubles for the zero section is an invariant set of  our  dynamics).  
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So, a given dynamical system can be "dissipative" with respect to a 
given o~e, and "conservative" with respect to some other. 

Example  2. The damped harmonic oscillator. 
On TQ = R x R ,  consider 

tx-  -d7 
do + 3'r + w2q = O, r 2 y2  --T>0 

The associated system a = dq - ?ldt, fl = dO + ( y / / +  ~oZq) dt allows for a 
Lagrangian description given by (Havas, 1957) 

1 

E = 2//_.+_y._.qq tan- '  2r + ~q l -  �89 + yq/ /+ ~2q21 
2q(~ 2 - y2/4) ' /2 2q(o~ 2 - 72 /4 ) ' / 2  ] 

Here q = 0  is not an invariant set, thus E fails to give a global 
Lagrangian for A. 

Both systems we have discussed above can be given a global Lagrangian 
description if we allow for time-dependent Lagrangians. The procedure 
through which we construct a Lagrangian is pretty general, so we review 
briefly time-dependent Lagrangian formalism in terms of differential geom- 
etry. 

3. LAGRANGIAN DESCRIPTION 

3.1. Time-Dependent Lagrangian Formalism (Abraham and Marsden, 
1978). We introduce here some notations. On TQ • R an extended second- 
order vector field A is expressed in local terms by 

8 .i 8 f i  8 
A = - ~ + q  ~ q / +  8i/i 

We say that A has a Lagrangian description if  iao~ e = 0 and ia dt = 1, where 0~e 
is defined by w e = d(dvE ). We recall that (Godbillion, 1969; Marmo and 
Saletan, 1977) a "vertical operator" v is defined by 

8 3 8 
X ~ % ( T Q ) ,  v : X =  - - + b  i - ~ v X =  

ai aqi 0;7. i ai 071 i 
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with adjoint v .  defined by 

0 ~ %*(TO), 
f ~ ~ ( T Q ) ,  

937 

v . :  0 = aidq i  + b i d q  i ~-+ t 9 , 0  = b i d q  i 

v . : f ~ v . f = f  

v .  defines a differential operator d o on functions by setting v , ( d f ) =  do f .  

(For extension of d o to forms see Godbillon, 1969.) In local coordinates 

d o e  = ~-=-::-. dq i, E e = iad~E - E 
00 '  

for some second-order vector field A. 
Then, if 0 e = doe  - E e dt, it is ~0 e = ddv~  - dE e /x  dt = dO e, and A = 

O / O t  + A 0 satisfies 

iao: e = O, i a dt = 1 (7) 

3.2. Dissipative Systems (Shahshahani, 1972; Cantrijn, 1981). On TQ, 

let A be a second-order vector field which has a Lagrangian description in 
terms of E ~ ~3(TQ), by 

iaoj e = _ dE e 

On T Q  basic 1-forms are defined as being generated by ~r*(%*(Q)); i.e., in 
local coordinates they are of the form 

a=a(q,r i a,(q,r 
i = l  

Forces can be defined as vertical vector fields, i.e., Y ~ % ( T Q )  such that 
v Y = O .  

For a given Lagrangian E, we can use the pairing 

ivo~ e = %, 

to associate forces and basic 1-forms on TQ. Forces F, associated to closed 
basic 1-forms, can be implemented in the vector field A, as A F = A + F, in 
such a way that A + F has a Lagrangian description. As a matter of fact, if 
ir~o e = df,  iao: e = - dE  e, the vector field A F = A + F has a Lagrangian 
description in terms of E + f (Marmo and Saletan, 1977). 
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We can define dissipative forces with respect to a given E as those 
vertical vector fields which are associated to nonclosed basic 1-forms on 
TQ; i.e., iroa e = a, a basic d a  * O) 

A subclass of dissipative forces with respect to E is given by those basic 
1-forms a which satisfy 

door = 0 

For these 1-forms it is possible to find a function ff ~ '3C(TQ) such that 
a =  d v f f - f f  ~ OC(TQ) is a generalization of the "Rayleigh's dissipation 
function" (Goldstein, 1980). 

Each dynamical system A r = A + F of this subclass needs two func- 
tions, E and if, to be determined as 

iar~o e = _ d E  e + d v ~  

An example of such a situation is given by van der Pol's equation (van 
der Pol, 1922; 1926): 

~i + tt ( q2 - 1 )  il + q = O 

Previous algorithm gives: 

g = � 8 9  q2), ff = �89 - 1)//2 

�9 O a 
A r = q-~q + [ - I~ ( q2 - 1 )  o + q ] -~q 

iar~ e = - dE  e + d~ff  

~The usual notion of dissipative systems starts from 

d aE 0~ 
dt aq i aq i 

a~ 

where Qi do not admit a Lagrangian description. In coordinate-free notation we have 

LaO e - dE = a, a = Qi dq i 

by using Cartan 's  identity L a = iad + di a, we get ia~0 e = d ( E -  iA0e)+ a. This relation sug- 
gests our use of dissipative. On the other hand, ia( LaO e - dE ) = iaot gives 

L a (  iaO e -  e )  = La(  Ee)  = - iaa ( * )  

Thus  what we are considering here as "dissipative" are second-order systems which do not 
preserve Poisson brackets on the tangent bundle. If we stick to (*)  then a =  Fq~lidq -', 
Fij = - Fji, would give iaa = Fq//i//-/= 0; thus dynamical  evolution would preserve E e while 
not  preserving Poisson brackets. 
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We have 

0 = ( -  dE  e + d v ~ 3 ) ( A r )  = - d E e ( F ) +  do~3(A) 

dEe 
dt = Lvr"S 

where Y =  ?1 i O/Otl i is the so-called Liouville vector field (GoldbiUon, 1969). 
We will investigate in some details a subclass of such systems, namely, 

those for which d d o ~ =  yddoE, ' t  ~ R.  They allow for a time-dependent 
Lagrangian description in terms of E ' =  e-Vte .  

We notice that ddo~ = yddoE implies do~  = ydoe  + a, where a is a 
closed basic 1-form. Such an a can be implemented, at least locally, in terms 
of E + f ,  where d f  = a. Thus we restrict our attention to oy's which satisfy 
do~3 = ,/doE. 

In this case, defining e ' =  e-ViE, we get 

o~ e, = e - V ~ e  - e - W y d t  A doe  - e - V  dEe A dt 

= e-V'[toe + ( d o ~ - d E e ) A  dt] 

Equations i~ 60 e, = 0, ixrdt = 1 are solved by b e = A v + O/Ot,  where iaFto e 
�9 F 

= - dE e + do~, for 

ix o~ e, = e-Vt[ ia  o~e + (do~3 - dE e) (  A F) dt - dv~3 + dE e ] 

= e -~ ' t (dog  - dE e - d o F +  dEe)  = 0 

where we have used 

ia iartoe = ( do~3 - dEe) (  AF)  = 0 

Going back to the previous examples we have the following: 
Example  1. For  the dynamical system described by 

# + ~,//=0 

we get a possible time-dependent Lagrangian description in terms of e '  
I-e'tth2 f o r  

~ 2  ~/ , 

iv~-~q ( dt 1 A dq)  = y i ld  q = ydo(�89 
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Example 2. For the damped harmonic oscillator, described by 

+ y / /+  to2q = 0 

again 

ivba/a#( d? 1 A dq) = Ycldq = "Ydv(�89 

implies a Lagrangian description in terms of 

eV'(�89 - �89 2 ) 

It is possible to generalize our previous procedure to the case of 
time-dependent dissipative forces replacing "/oR with ~/= "/(t). This situa- 
tion is the same given by Lane-Emden equation (Cantrijn and Sarlet, 
1981): 

2 
gl + T i l  + qS = O 

i.e., Poisson equation for a spherically symmetric system in hydrostatic 
equilibrium (Chandrasekhar, 1958). Since we have 

2 .  11.2 i(2/,)qa/aq(dil A dq)  = 271d q = t a v k ~ q  ) 

a possible Lagrangian description is given by (Logan, 1977) 

e ' - - e 2 t n ' ( � 8 9  6) 

At the Hamiltonian level a Hamiltonian dynamics is defined by 

ia dO = - dH  

Basic 1-forms on T*Q are given, in local terms, as a =  ai( q, p ) d q  i and 
vector fields associated to basic 1-forms are given by irdO = a. The local 
expression for F will be F = a i a/api. 

Hamilton's equations for A are 

dq__~_ = a H  dp i a H  

dt api ' dt Oq ~ 
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and those associated to A F = A + F will be 

dq i=  OH dad i OH 
- - + a  i dt O p j ' dt O q ~ 

Again, if da = 0, i.e., locally a = df, we get 

0f iAFdO= - d(  H -  f ) and a i =  -- - -  
Oq ~ 

On the phase space where we allow for general canonical transforma- 
tions the "f ibered" nature of T*Q gets lost and the notion of basic 1-form is 
not preserved. Nevertheless it is still possible to consider the analog of 
doff = 3 'd~  by considering a = yO. The ambiguity is choosing O out of dO is 
given by a closed 1-form. Such closed 1-form can be taken in account, at 
least locally, through H '  = H - f ,  where a = dr. Thus we are left with 

i r d O  = yO 

Dynamical  systems as A F = A + F can be given a t ime-dependent 
Hamiltonian description through 

O =  eVtO 

Equations (7) are replaced by 

iT~J[evt(O - Hdt)]  = 0 ,  iT~rdt=l 

A remark is in order here. The vector field F determined by iFdO = yO 
may turn out to be Hamiltonian with respect to some other symplectic 
structure. 

The following example illustrates the situation. 
An unusual Lagrangian description for the free particle, E = e ~, on 

TQ = R X R, gives equations of motion e#/] = 0 ~ / / =  0. The "dissipative 
force" such that irddv~ = dv~ is given by F =  1 O/Oq, for doe = e~dq, ddo~ 
= e~dO A dq. Of course, the vector field A = / / O / O q ,  by adding F, becomes 

0 0 
qT4q +10  

which has an obvious time-dependent Lagrangian description through 
= �89 _ q, without going to E' = e v'+# (y = 1). 
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4. DIFFERENT LAGRANGIAN D E S C R I P T I O N S  A N D  
DISSIPATIVE FORCES 

By using different Lagrangian descriptions, is it possible to obtain 
different "dissipative forces" by the procedure iFto e = doE? This example 
shows that it may not be the case. For instance, let Et = / / l / / 2 -  qlq2 and 
E2 =�89 + {/2 2 _ q 2 _  q2 2) be two different Lagrangians for the isotropic 
harmonic oscillator with two degrees of freedom. It turns out 

OOfal=d~]l ^ dq2 q- d~12 ^ dql, 

%=@,a aq, + @2 ^ aq2, 

and i F,~e, = Or,, i r=~e, = 0e~ give 

Or, = O, aq2 + 02 aq, 

or, = o~aq, + i12dq2 

0 0 
F 1 = F 2 --//, ~ +//2 

002 c,q I 

How should we choose different Lagrangian descriptions to get differ- 
ent F 's? First, notice that, in general 

iF d O t = O e = n O t  ^ (dOt , )  " - '  

We can write 

=ir,(dOe,)" ( i = 1 , 2 )  

( dOL,)" = f,2( dOt=)" 

with fl 2 ~ ~C(TQ). If we take F t = F 2, we get 

/,20t2 ̂ (dOt2) "-'= Oz, ̂  (de<)"'  

This is a necessary and sufficient condition for F~ = F 2. As a matter of fact, 
any volume element f~ defines an isomorphism 

9 C ~  A 2"-I 

by X---+ i x~.  
Going back to the example of the harmonic oscillator, we get 

6~ ^ Oat 2 = r176 ̂  ~ ~ f ,2  = 1 
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and 

O~, ̂  doe, = O~ dq: ^ @2 ^ dq~ + q2 dq~ ^ @~ ^ dq2 

e~ ^ doe, = q, dq, ^ @2 ^ dq2 + 02 @2 ^ @~ ^ dq~ 

Thus, conditions for F 1 = F 2 are satisfied. 
Comments :  Even if we find different Lagrangians satisfying previous 

conditions for F I :~ F 2, we are not assured that we can recover all possible 
dissipative forces. 

5. N O E T H E R ' S  T H E O R E M  FOR S O M E  DISSIPATIVE 
S Y S T E M S  (Cantrijn, 1981) 

In this section we would like to consider Noether 's  theorem in its 
simplest form, i.e., in terms of point transformations which preserve the 
Lagrangian. 

On TQ,  if iAW e = - - d E e i X  ~ %(Q) ,  and J( is the lifting of X to TQ,  
then 

and 

L j c f  = 0 ~ L k A  = 0, L y E  e = 0 

Lscd v = dvLjr  

(see Marmo and Saletan, 1977). Noether 's  theorem asserts that i ~ d ~ f  is a 
constant of the motion. In our formalism this is given by 

i k (  L a d ~ f  - d r )  = 0 = L a ( i k d o f  ) 

If we build up a dissipative system through iaFo: e = - dE e + 3,doff and 
its t ime-dependent Lagrangian description: 

ix t~ e, = O, ix d t  = 1 

we have i y d o ( e - V t f )  is a constant of the motion for AF, from 

L x ~ [ i k d  o ( e - V t f ) ]  = LAy( e-vti~,Or ) 

= -- e-Vt3,i~COL + e-rt3,i~cOe = 0 
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The Damped Harmonic Oscillator. On TQ = R 4 = R 2 • R 2, 

qi + y i l i  + 6o2qi = 0, i ~ { 1,2) 

AF:f l i  O__.~__(.rqi+to2qi) a_..~__.X.4=aijqi 09 
8q ~ 071 i 8q i 

j O  . i 0  
J(A = aijq ~ + aijq a~lj 

[gA, AF]:aijili-~--(aij'yi]i--~qj +t~2ai.qi ~---~-- ) 
J OqJ 

i 8 " i 0 _ _  0 -- aij ~ ~ + [7?t -F o~2qi)a U 8?1 j 

Thus, A F is invariant under the homogeneous linear group GL(2, R). 
Among equivalent Lagrangian descriptions for our system we can choose 
the usual one: 

We have 

E : � 8 9  q '2 ) 

for aij = -  aji, aijajk = ~ ik ;  i.e., the given Lagrangian selects the rotation 
group. Thus e-'rtaijil'q j= i xdog  is a constant of the motion. In fact 

L~r ( e-'tta ijiliq j) = 0  

6. CONCLUSIONS 

We have shown in elementary terms how the ambiguity of Lagrangian 
and Hamiltonian descriptions for conservative systems gives rise to an 
analogous ambiguity for the description of dissipative systems. 
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For  a subclass of  dissipative systems we have given a t ime-dependent  
Lagrangian description, explaining its geometrical origin. We leave it as an 
open problem how to deal with remaining ones. We would like to notice 
here that any dynamical  system on Q can be given a Hamil tonian descrip- 
tion by the following procedure.  

Let A be a dynamical  system on Q. On T*Q we define a unique A 1', by  
setting L~ r 00 = 0 (this gives a unique A 1', for i a ~ dO o = L a ~ 0 o - di~ t 00, 

and noticing that i a , 00 depends only on A). A $ has Hamil tonian  H = i a r 00- 
This means that by adding at most  n variables it is always possible to put  
any system in a Hamil tonian  form. It is interesting to ask for a minimal set 
of  variables we need to add to give our  system a Hamil tonian  form. Our  
t reatment  can be thought  of  as a contr ibut ion in characterizing a subclass of  
systems for which only one variable will do. 

We have not  touched upon the problem of  quantization. A straightfor- 
ward canonical  quantizat ion would give rise to problems for the Poisson 
brackets of  conjugate  variables have an exponential  time dependence.  To 
deal with some of  such systems in D o d o n o v  and M a n ' k o  (1977) the concept  
of  loss-energy states is introduced.  
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